LIFE CYCLE PRODUCTION AND COSTS OF A RESIDENTIAL SOLAR HOT WATER AND GRID-CONNECTED PHOTOVOLTAIC SYSTEM IN HUMID SUBTROPICAL TEXAS

OUTLINE OF PRESENTATION

- context
- presentation of systems
- annual production
- life cycle production
- economic performance

J.F. SWEENEY, JULY 9th 2015
NREL SAMVIRTUAL CONFERENCE

THE DWELLING

- 6,200 sq. feet home in Houston, Texas (south eastern Texas, climate is humid subtropical)
- Insulated concrete wall system with radiant barrier on entire building envelope
- Super durable roof, with sealed attice (unconditioned)
- Efficient heat pumps
- Solar thermal system (dom. hot water)
- Grid-tied Photovoltaic system (3.5 KW)
- Low flow faucets and toilets
- Rainwater harvesting with an underground collection cistern (7600 gallons)
 - Building constructed in the Fall of 2009

LOCATION DATA

Site parameters

Elevation 13 m

Latitude 29.65 °N

Longitutde -95.283 °E

Annual irradiance data

Global horizontal 4.28 kWh/m2/day

Direct normal 3.68 kWh/m2/day

Diffuse horizontal 2.01 kWh/m2/day

Avg temperature 21.1 °C

Avg wind speed 3.5 m/s

Figure 1.A satellite image of the renewable energy systems at the residence in Houston Texas: a photovoltaic system and a solar hot water system (Google Maps, 2014).

SOLAR PHOTOVOLTAIC SYSTEM

- Grid tied
- ▶ 20 BPI75 W Solar Panels
- ► Enphase MP175 Micro-Inverter on each panel
- ▶ Total Size 3.5 kW
- ► Estimated to produce 4,346 kWh/ year
- Mounted on the 180° azimuth and at a 40° tilt

MICRO- INVERTER SPECIFICATIONS		
STC Input Power (DC)	210W	
Max Output Power (AC)	175 W	
Nominal Current (AC)	750 mA	
Peak Inverter Efficiency	95%	

SOLAR HOT WATER SYSTEM

Energy Pack

- Heat transfer core
- Heat exchanger, manifolds, expansion tank
- 1/125 HP motor (23 W)/pump
- Controller starts
 pump if collector and
 storage tank is greater
 than 18 deg F
- Storage tank feeds demand hot water heater to makeup if necessary

Flat Plate Collector

- Type: Liquid flat plate, 22° tilt, 270° azimuth
- Absorber: 0.5 mm Al sheet
- Dimensions: 4X8, Area: 2.874 m2

SPVS monthly energy production (field and simulation)

Solar photovoltaic system monthly energy production (field and simulation)

- Tilted surface radiation HDKR diffuse sky model with beam and diffuse irradiance components
- TMY3 weather data used in simulation
- Model uncertainties reported in literature 8-15%
- Measured uncertainty was estimated at 5%
 - Model annual output within 6% (2012) and 12% (2013) of measurements

SPVS P50/P90 AND TMY3 ANNUAL ENERGY PRODUCTION COMPARISON

- Utilized SAM's simulation probabilistic tools with 30-YR NSRDB
- P50/P90 predictions illustrate consistent radiation on the 30-YR data set.
- TMY3 estimate consistent with P50/P90 predictions

SHWS monthly energy production (field and simulation)

- Tilted surface radiation HDKR diffuse sky model with beam and diffuse irradiance components
- ► TMY3 weather data used in simulation
- Hot water demand based on ASHRAE 90.2 - 4 people, 74 gal/day
- Model uncertainties reported 5.46% and 10% uncertainty (measured and simulated respectively)
- Model annual output within 3.5% (2012) of measurements

SHWS P50/P90 AND TMY3 ANNUAL ENERGY PRODUCTION COMPARISON

- Utilized SAM's simulation probabilistic tools with 30-YR NSRDB
- P50/P90 predictions illustrate consistent radiation on the 30-YR data set.
- TMY3 estimate consistent with P50/P90 predictions

SOLAR SYSTEMS INITIAL AND LIFETIME MODELED COSTS

Lifetime costs

Lifetime parameters	Unit	Solar photovoltaic	Solar hot water
Average lifetime	Years	30	30
Annual degradation	%	0.5	0.5
Annual maintenance	\$/Year	\$40	\$40
Lifetime replacement costs	\$/Avg Lifetime	\$1,200	\$600
Salvage value (% of original value)	%	15%	15%
Lifetime costs	\$	\$2,400	\$1,800

Initial costs

PHOTOVOLATIC SYSTEM COSTS			
Description	Percent of total		Cost
Module	30.1%	\$	7,968
Inverter	13.3%	\$	3,525
Balance of equipment	18.1%	\$	4,782
Installation labor	18.6%	\$	4,912
Overhead and profit	19.9%	\$	5,262
Price		\$	26,448

SOLAR HOT WATER SYSTEM COSTS			
Description	Percent of total	(Cost
Appliance and collector	47.2%	\$	3,000
Storage Tank	11.0%	\$	700
Mounting hardware, piping, etc	4.7%	\$	300
Installion	15.7%	\$	1,000
Overhead and profit	21.3%	\$	1,350
Price		\$	6,350

LIFECYCLE PERFORMANCE

Model assumptions

- ▶ 30-YR life cycle
- ▶ 0.5% annual degradation
- ► Gas burner efficiency 86%, Tank losses 20%

Solar energy system type	Annual energy production (kWh)	30-year lifecycle energy production (kWh)
Solar photovoltaic system	4,226	117,994
Solar hot water system (natural gas heating)	2,393	66,820
Solar hot water system (electric heating)	1,846	51,555

SPVS P90/P50 AND TMY3 LCOE, PAYBACK AND NPV

Economic performance indicators

- Payback
- Net present value (NPV)

$$NPV = \sum_{t=0}^{T} \frac{NBt}{(1+d) t}$$

Levelized cost of energy (LCOE)

LCOE =
$$\frac{\sum_{n=0}^{N} \frac{C_n}{(1+d)^n}}{\sum_{n=1}^{N} \frac{Q_n}{(1+d)^n}}$$

Solar Photovoltaic System LCOE, Payback and NPV Payback (yrs) Real LCOE (cents/kWh) ■ NPV (\$) 243.5 29.311.9 29.211.6 28.211.0 29.512.6 29.312.0 29.011.5 29.212.29 0.2 0.3 P90-emp MAX-emp STDEV-emp P50-norm p90-norm P50-emp MIN-emp TMY3 -508.7-1246 -1374.1-1396.2-1660.5 -1686.3 -1729.5

Simulation output variable

Model assumptions

- 30-YR loan at 4% IR, 100% debt fraction
- Discount rate: 4.4%
- Sales Tax : 8.25%
- Federal income tax: 33%

SHWS P90/P50 AND TMY3 LCOE, PAYBACK AND NPV

Economic performance indicators

- Payback
- Net present value (NPV)

$$NPV = \sum_{t=0}^{T} \frac{NBt}{(1+d) t}$$

Levelized cost of energy (LCOE)

LCOE =
$$\frac{\sum_{n=0}^{N} \frac{C_n}{(1+d)^n}}{\sum_{n=1}^{N} \frac{Q_n}{(1+d)^n}}$$

Solar Hot Water System (aux elec) LCOE, Payback and NPV

■ Real LCOE (cents/kWH)
■ Payback (yrs)
■ NPV (\$)

Model assumptions

- 30-YR loan at 4% IR, 100% debt fraction
- Discount rate: 4.4%
- Sales Tax : 8.25%
- Federal income tax: 33%

REAL LCOE INITIAL COST SENSITIVITY

